THE DECARBONIZATION REVOLUTION

Ted M. Tiffany

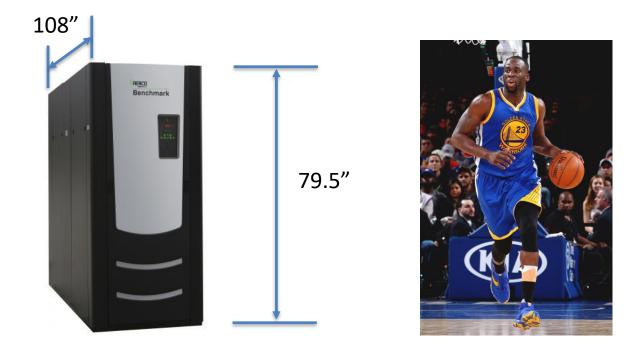
Principal Director of Sustainability

grounded ground-breaking engineering

Technology & Design for Decarbonization

DESIGN PROFESSIONAL'S GUIDE TO DECARBONIZATION OF THE BUILT ENVIRONMENT

PRIMER DOCUMENT – MARCH 2020



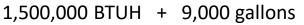
WRNSSTUDIO

Equipment Space – Boiler

Myth Busting: Electric Boiler vs. Gas Boiler

6,000,000 BTUH

Myth Busting: Air-Source HPWH vs. Boiler



6,000,000 BTUH

Equipment Space – Air-Source HPWH vs. Boiler

SHAWN ORAM, PE

Director of Engineering & Design

HEAT PUMPS ARE NOT BOILERS

- Efficiency impacted by Air and Water Temps
- Limited Temperature Ranges
- Output temperature limited
- Different refrigerants for different applications
- Larger Hot Water Plant Footprints
- Expensive Oversize
- Require Right Sizing (Both Loads)
- Shouldn't cycle more than 6x/Hr
- Defrost Cycles
- Complex Controls

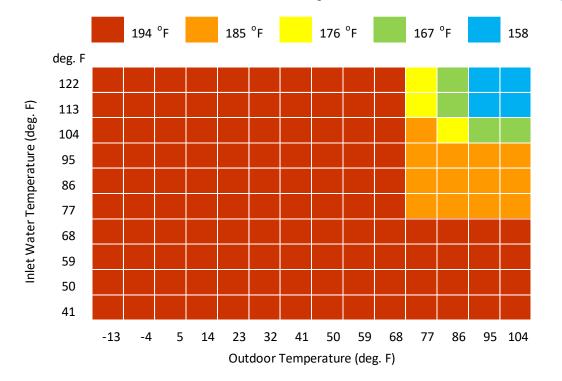
Heat Pumps are Not Boilers

DESIGN TOOLS

Circulation loop losses and reheat sizing

Primary plant sizing (capacity & storage) optimization

ECOTOPE


MARKET DEVELOPMENT NEEDS

Simulation Protocol

ECOTOPE.COM

Myth Busting: Heat Pumps CAN'T work in cold climates and can't produce enough hot water

Heat Pumps CAN Produce 140+ deg. F Water EVEN WELL Below Freezing with the right selection

Myth Busting: Not Enough Products on the Market

SMALL PROJECTS

SMALL HPWH

CENTRAL SYSTEMS DOMESTIC HOT WATER

Colmac 66 to 270 MBH Nyle Geyser C-Series 28.6 to 272 MBH

Mayekawa Unimo AW 204 MBH Mitsubishi QAHV 136 MBH

SMALL PROJECTS

CENTRAL AIR-SOURCE HPWH

CENTRAL SYSTEMS DOMESTIC HOT WATER

Nyle Geyser C-Series 28.6 to 272 MBH

Mayekawa Unimo WW 270 MBH Colmac 37 to 1,000 MBH

SMALL PROJECTS

CENTRAL WATER-SOURCE HPWH

DHW & LARGE CENTRAL HEATING/COOLING PLANTS

Air-Cooled

Water-Cooled

Aermec NRP/NRL 50 to 130 TR

Climacool UCA 20 to 420 TR Multistack DRHC 10 to 1,320 TR

LARGE PROJECTS

HEAT RECOVERY CHILLER PLANTS

ELECTRICAL SERVICE IMPACTS

Assumed Electric Boiler

8

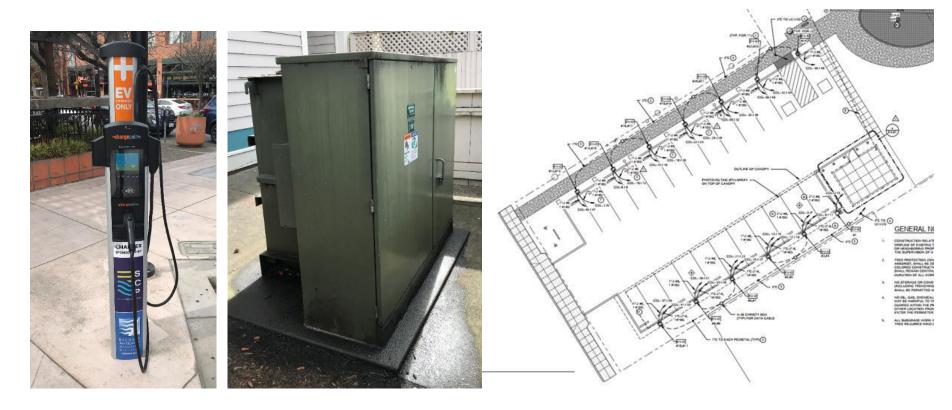
BUILDING COMMON AREA LOADS: 7 EV CHARGER SYSTEM 298080 Watts Α. = Β. REACH HOT WATER SYST. 448000 Watts = 25% LARGEST 13650 Watts С = 2110.4 A @ 3 PH. = 759730 VA D. TOTAL HOUSE LOAD: = TOTAL BUILDING SERVICE 1 DEMAND LOAD 1297789 W 3605.0 A 9. TOTAL BUILDING DEMAND AMPS: (AT 120/208V, 3 PH., 4W. SERVICE) 10. BUILDING MAIN SWITCHBOARD MSB1: A. MAIN SWITCHBOARD "MSB1": 4000 A. 120/208V, 3 PH., 4W. B. MAIN SERVICE SIZE: 4000 A, UTILITY SERVICE

Central Heat Pump Water Heater

7. BUILDING COMMON AREA REACH LOADS: EV CHARGER SYSTEM Α. =

	B.	REACH HOT WATER SYST.	=	144960 Watts (120+24CONT)	
	C.	25% LARGEST	=	13650 Watts	
	D.	TOTAL HOUSE LOAD:	=	803.3 A @ 3 PH. = 2891	70 VA
8.	. BUILDING COMMON AREA LOADS:				
	A.	PANELS "2H""2H1"	=	132298 Watts	
	B.	PANELS "1H""5H""9H"	=	212224 Watts	
	C.	PANELS 2LR, 2E	=	54090 Watts	
	D.	ROOF AH UNIT	=	33840 Watts	
	E.	3 ELEVATORS @ 25HP	=	69750 Watts	
	F.	125% LARGEST MOTOR	=	34000 Watts	
	G.	25% HOUSE LTG.	=	9994 Watts	
	H.	TOTAL HOUSE LOAD:	=	1517.2 A @ 3 PH. = 5461	96 VA
9.				13101	
10.	IOTA	L BUILDING DEMAND AMPS: (AT 120/208V, 3 PH., 4W. SE	RVICE)	= 90.99% 3639	9.4 A
11.	BUILD	ING MAIN SWITCHBOARD M	SB1:		

130560 Watts


(34 @ 16A)

A. MAIN SWITCHBOARD "MSB1": B. MAIN SERVICE SIZE:

4000 A,	120/208V, 3 PH., 4W.
4000 A,	UTILITY SERVICE

448kW for Assumed Electric Boiler	Heat Pumps 144kW 67% Lower Service Size
EXTRA SERVICE NEEDED FROM UTILITY	STAYS WITHING EXISTING DESIGN SERVICE

ELECTRICAL SERVICE IMPACTS

EXTRA SERVICE NEEDED FROM UTILITY? Planning for future EV Stations= Future Capacity?

STAYS WITHING EXISTING DESIGN SERVICE? Service for minimal charging stations

Sonoma Clean Power Headquarters

- Building retrofit with high efficiency rooftop heat pumps
- Smart VAV diffusers
- On-site solar, stationary battery storage, car charging
- NBI Grid Optimal Pilot
- Automatic, grid-signaled HVAC, lighting and plug load demand reduction
- Estimated completion 2020

SMUD East Campus Operations

- 350,000 SF ZNE Campus
- No gas on site
- Shades allowed zero infiltration for direct solar
- Use of ceiling fans and chilled beams to minimize reheat
- Use of thermal mass to offset peak demand
- Evap cooling, natural ventilation
- Radiant heating
- Horizontal geofield
- Modular heat pump chillers to concurrently produce chilled and hot water with below ground storage for both
- PV array for 100% the electrical load
- Solar Thermal DHW
- Grey Water System
- Completed in 2014

Silver Oak Winery

- Healdsburg
- Winery production, visitor center/tasting room, onsite water reuse facility
- Central Heat Pump Water Heating
- On-site solar
- Car charging
- Ammonia Chillers for Process
 Cooling
- Onsite Wastewater Treatment
- Zero Net Energy
- Zero Net Water
- Completed 2019

Silver Oak Winery

LIVING BUILDING CHALLENGE^{**}

Silver Oak Energy Use Breakdown

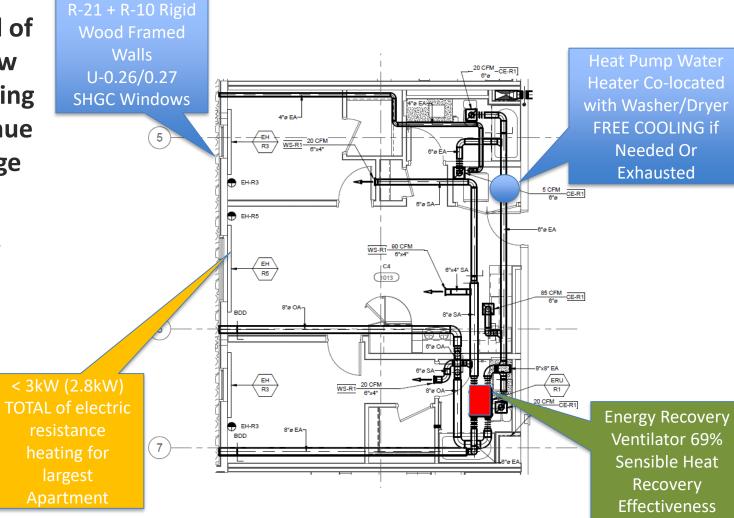
Santa Rosa Junior College: Burbank Theater and Geothermal Plant

- Geothermal field connecting 6 existing buildings
- Heat recovery (6-pipe) chiller
- Eliminate gas boilers and water heaters.
- Building ZNE Retrofit envelope and MEP systems
- Chilled and hot water air handlers
- Displacement ventilation in auditoriums.
- Estimated completion 2019

Santa Rosa Junior College: Burbank Theater and Geothermal Plant

- Analysis for performance of underutilized existing field to connect additional buildings to
- Creating new geothermal field under the existing track and football field and under renovated parking lot.
- Enhanced SRJC's goals to go All-Electric and enhance microgrid and renewable energy projects.
- Eliminated the need to rebuild failed Co-Gen plant

Albany High School


- All-electric, ZNE Design
- Daylighting Analysis
- Single Zone VAV Heat Pumps
- Heat Recovery Ventilators
- Heat Pump Water Heaters
- Mixed Mode Design with window sensors
- 80 kW of PV
- Estimated completion 2019

Goldman School of Public Policy New Classroom Building and Hearst Avenue Housing & Garage

- All-electric design
- Rooftop Heat Pump for HHW
- Low Temp DX Cooling Rooftop Unit
- Smart VAV diffusers
- Electric Radiant Heat with ERV for Residential
- Estimated completion 2021

Goldman School of Public Policy New Classroom Building and Hearst Avenue Housing & Garage

- Simplified Construction
- Lowered First Cost
- Allowed for individually metered apartments
- NO central systems for residences to maintain

System Specs (Each Unit)

- Entering Water Temperature: 60F
- Leaving Water Temperature: 140F
- Entering Air Temperature: 70F
- Heating Capacity: 262,600 BTU/hr
- Cooling Capacity: 207,100 BTU/hr\
- Power Input: 20 kW
- Heating C.O.P: 4.15
- Cooling C.O.P: 3.3
- Combined C.O.P: 7.45

UCSF Minnesota Housing Commissioning

- 333 Beds of Housing
- 4 Nyle Heat Pumps
- Storage tanks in the basement
- All Electric Kitchens

Questions?

Ted M. Tiffany

LEED AP BD&C Principal -Director of Sustainability

grounded ground-breaking engineering